Diễn Đàn Bác Sĩ Y Học Dự Phòng

Diễn Đàn Bác Sĩ Y Học Dự Phòng

TƯƠNG LAI LÀ DO CHÚNG TA QUYẾT ĐỊNH
 
Trang ChínhCalendarTrợ giúpTìm kiếmThành viênNhómĐăng kýĐăng Nhập
524 Số bài - 36%
429 Số bài - 29%
311 Số bài - 21%
116 Số bài - 8%
27 Số bài - 2%
24 Số bài - 2%
12 Số bài - 1%
11 Số bài - 1%
10 Số bài - 1%
8 Số bài - 1%


Admin nhắn với tất cả: xi lỗi trong thời gian qua do bạn công tác nên admin vắng nhà bây giờ admin đã trở lại sẽ làm cho diễn đàn tươi mới hơn              mr_soc nhắn với ydp10: co ai la dan ydp tp hcm ko.cung lam wen giup do mhau trong hok tap nha                 
Bạn phải đăng nhập để gửi Thông điệp
Tài khoản:Mật khẩu:
Đăng nhập tự động mỗi khi truy cập:
:: Quên mật khẩu
Gửi đến :
Emoticon
Lời nhắn :

|
Bookmarks

Trị số P trong NCKH - Tại sao người ta hay chọn 0.05. Đúng hay sai?

Xem chủ đề cũ hơn Xem chủ đề mới hơn Go down
Thu Dec 09, 2010 10:03 pm
không có việc gì khó, chỉ tại không biết làm
thang_ph
Admin

Cấp bậc thành viên
Danh vọng:
11%/1000%

Tài năng:30%/100%

Liên lạc
Xem lý lịch thành viên

Thông tin thành viên
» Nam
» Tổng số bài gửi : 11
» Points : 27
» Reputation : 0
» Join date : 04/12/2010
» Age : 30
» Hiện giờ đang:

Bài gửiTiêu đề: Trị số P trong NCKH - Tại sao người ta hay chọn 0.05. Đúng hay sai?


Trị số P trong NCKH - Tại sao người ta hay chọn 0.05 ?Thấy đây là cái cơ sở mà sinh viên lẫn người nghiên cứu còn mơ hồ và đôi khi sai. Và khá nhiều nghiên cứu dù làm xong nhưng không dám ứng dụng. Có nhiều nguyên nhân để giải thích điều này. Tuy nhiên, theo mình đơn giản trị số P chưa hiểu cặn kẻ và sai trong phương pháp làm.Xin trích nguyên bài viết của GS NVT về trị số P (Bài viết có vài chổ bị xóa đi. Bạn đọc có thể lấy nguyên file gốc ở Ykhoa.net hoặc Nguyenvantuan.com)1. Trị số PTrị số P là một con số xác suất, tức là viết tắt chữ “probability value”. Chúng ta thường gặp những phát biểu được kèm theo con số, chẳng hạn như “Kết quả phân tích cho thấy tỉ lệ gãy xương trong nhóm bệnh nhân được điều trị bằng thuốc Alendronate là 2%, thấp hơn tỉ lệ trong nhóm bệnh nhân không được chữa trị (5%), và mức độ khác biệt này có ý nghĩa thống kê (p = 0.01)”, hay một phát biểu như “Sau 3 tháng điều trị, mức độ giảm áp suất máu trong nhóm bệnh nhân là 10% (p < 0.05)”. Trong văn cảnh trên đây, đại đa số nhà khoa học hiểu rằng trị số P phản ánh xác suất sự hiệu nghiệm của thuốc Alendronate hay một thuật điều trị, họ hiểu rằng câu văn trên có nghĩa là “xác suất mà thuốc Alendronate tốt hơn giả dược là 0.99” (lấy 1 trừ cho 0.01). Nhưng cách hiểu đóhoàn toàn sai!Trong “Từ điển toán kinh tế thống kê, kinh tế lượng Anh – Việt” (Nhà xuất bản Khoa học và Kĩ thuật, 2004), tác giả định nghĩa trị số P như sau: “P – giá trị (hoặc giá trị xác suất). P giá trị là mức ý nghĩa thống kê thấp nhất mà ở đó giá trị quan sát được của thống kê kiểm định có ý nghĩa” (trang 690). Định nghĩa này thật là khó hiểu! Thật ra đó cũng là định nghĩa chung mà các sách khoa Tây phương thường hay viết. Lật bất cứ sách giáo khoa nào bằng tiếng Anh, chúng ta sẽ thấy một định nghĩa về trị số P na ná giống nhau như “Trị số P là xác suất mà mức độ khác biệt quan sát do các yếu tố ngẫu nhiên gây ra (P value is the probability that the observed difference arose by chance)”.Thật ra định nghĩa này chưa đầy đủ, nếu không muốn nói là … sai. Chính vì sự mù mờ của định nghĩa cho nên rất nhiều nhà khoa học hiểu sai ý nghĩa của trị số P.Thật vậy, rất nhiều người, không chỉ người đọc mà ngay cả chính các tác giả của những bài báo khoa học, không hiểu ý nghĩa của trị số P. Theo một nghiên cứu được công bố trên tập san danh tiếng Statistics in Medicine [1], tác giả cho biết 85% các tác giả khoa học và bác sĩ nghiên cứu không hiểu hay hiểu sai ý nghĩa của trị số P. Đọc đến đây có lẽ bạn đọc rất ngạc nhiên, bởi vì điều này có nghĩa là nhiều nhà nghiên cứu khoa học có khi không hiểu hay hiểu sai những gì chính họ viết ra có nghĩa gì! Thế thì, câu hỏi cần đặt ra một cách nghiêm chỉnh: Ý nghĩa của trị số P là gì? Để trả lời cho câu hỏi này,chúng ta cần phải xem xét qua khái niệm phản nghiệm và tiến trình của một nghiên cứu khoa học.2 Giả thiết khoa học và phản nghiệmMột giả thiết được xem là mang tính “khoa học” nếu giả thiết đó có khả năng “phản nghiệm”. TheoKarl Popper, nhà triết học khoa học, đặc điểm duy nhất để có thể phân biệt giữa một lí thuyết khoa học thực thụ với ngụy khoa học (pseudoscience) là thuyết khoa học luôn có đặc tính có thể “ bị bác bỏ” (hay bị phản bác – falsified) bằng những thực nghiệm đơn giản. Ông gọi đó là “khả năng phản nghiệm” (falsifiability, có tài liệu ghi là falsibility). Phép phản nghiệm là phương cách tiến hành những thực nghiệm không phải để xác minh mà để phê phán các lí thuyết khoa học, và có thể coi đây như là một nền tảng cho khoa học thực thụ. Chẳng hạn như giả thiết “Tất cả các quạ đều màu đen” có thể bị bác bỏ nếu ta tìm ra có một con quạ màu đỏ.Có thể xem qui trình phản nghiệm là một cách học hỏi từ sai lầm! Thật vậy, trong khoa học chúng ta học hỏi từ sai lầm. Khoa học phát triển cũng một phần lớn là do học hỏi từ sai lầm mà giới khoa học không ai chối cãi. Sai lầm là điểm mạnh của khoa học. Có thể xác định nghiên cứu khoa học như là một qui trình thử nghiệm giả thuyết, theo các bước sau đây:Bước 1, nhà nghiên cứu cần phải định nghĩa một giả thuyết đảo (null hypothesis), tức là một giả thuyết ngược lại với những gì mà nhà nghiên cứu tin là sự thật. Thí dụ trong một nghiên cứu lâm sàng, gồm hai nhóm bệnh nhân: một nhóm được điều trị bằng thuốc A, và một nhóm được điều trị bằng placebo, nhà nghiên cứu có thể phát biểu một giả thuyết đảo rằng sự hiệu nghiệm thuốc A tương đương với sự hiệu nghiệm của placebo (có nghĩa là thuốc A không có tác dụng như mong muốn).Bước 2, nhà nghiên cứu cần phải định nghĩa một giả thuyết phụ (alternative hypothesis), tức là một giả thuyết mà nhà nghiên cứu nghĩ là sự thật, và điều cần được “chứng minh” bằng dữ kiện. Chẳng hạn như trong ví dụ trên đây, nhà nghiên cứu có thể phát biểu giả thuyết phụ rằng thuốc A có hiệu nghiệm cao hơn placebo.Bước 3, sau khi đã thu thập đầy đủ những dữ kiện liên quan, nhà nghiên cứu dung một hay nhiều phương pháp thống kê để kiểm tra xem trong hai giả thuyết trên, giả thuyết nào được xem là khả dĩ. Cách kiểm tra này được tiến hành để trả lời câu hỏi: nếu giả thuyết đảo đúng, thì xác suất mà những dữ kiện thu thập được phù hợp với giả thuyết đảo là bao nhiêu. Giá trị của xác suất này thường được đề cập đến trong các báo cáo khoa học bằng kí hiệu “P value”. Điều cần chú ý ở đây là nhà nghiên cứu không thử nghiệm giả thuyết khác, mà chỉ thử nghiệm giả thuyết đảo mà thôi.Bước 4, quyết định chấp nhận hay loại bỏ giả thuyết đảo, bằng cách dựa vào giá trị xác suất trong bước thứ ba. Chẳng hạn như theo truyền thống lựa chọn trong một nghiên cứu y học, nếu giá trị xác suất nhỏ hơn 5% thì nhà nghiên cứu sẵn sàng bác bỏ giả thuyết đảo: sự hiệu nghiệm của thuốc A khác với sự hiệu nghiệm của placebo. Tuy nhiên, nếu giá trị xác suất cao hơn 5%, thì nhà nghiên cứu chỉ có thể phát biểu rằng chưa có bằng chứng đầy đủ để bác bỏ giả thuyết đảo, và điều này không có nghĩa rằng giả thuyết đảo là đúng, là sự thật. Nói một cách khác, thiếu bằng chứng không có nghĩa làkhông có bằng chứng.Bước 5, nếu giả thuyết đảo bị bác bỏ, thì nhà nghiên cứu mặc nhiên thừa nhận giả thuyết phụ. Nhưng vấn đề khởi đi từ đây, bởi vì có nhiều giả thuyết phụ khác nhau. Chẳng hạn như so sánh với giả thuyết phụ ban đầu (A khác với Placebo), nhà nghiên cứu có thể đặt ra nhiều giả thuyết phụ khác nhau như thuốc sự hiệu nghiệm của thuốc A cao hơn Placebo 5%, 10% hay nói chung X%. Nói tóm lại, một khi nhà nghiên cứu bác bỏ giả thuyết đảo, thì giả thuyết phụ được mặc nhiên công nhận, nhưng nhà nghiên cứu không thể xác định giả thuyết phụ nào là đúng với sự thật.Phần này ngay cả bản thân tôi vẫn còn hạn chế trong diễn đạt nên không thể đưa phần của GS NVT vào. Bạn đọc có thể lấy nguyên file của GS Tuấn đọc lại.3. Vấn đề logic của trị số PNhưng đứng trên phương diện lí trí và khoa học nghiêm chỉnh, chúng ta có nên đặt tầm quan trọng vào trị số P như thế hay không? Theo tôi, câu trả lời là không. Trị số P có nhiều vấn đề, và việc phụ thuộc vào nó trong quá khứ (cũng như hiện nay) đã bị rất nhiều người phê phán gay gắt. Cái khiếm khuyết số 1 của trị số P là nó thiếu tính logic. Thật vậy, nếu chúng ta chịu khó xem xét lại ví dụ trên, chúng ta có thể khái quát tiến trình của một nghiên cứu y học (dựa vào trị số P) như sau:Đề ra một giả thuyết chính (H+)Từ giả thuyết chính, đề ra một giả thuyết đảo (H-)Tiến hành thu thập dữ kiện (D)Phân tích dữ kiện: tính toán xác suất D xảy ra nếu H- là sự thật. Nói theo ngôn ngữ toán xác suất, bước này xác định P(D | H-).Vì thế, con số P có nghĩa là xác suất của dữ kiện D xảy ra nếu (nhấn mạnh: “nếu”) giảthuyết đảo H- là sự thật. Như vậy, con số P không trực tiếp cho chúng ta một ý niệm gì về sự thật của giả thuyết chính H; nó chỉ gián tiếp cung cấp bằng chứng để chúng ta chấp nhận giả thuyết chính và bác bỏ giả thuyết đảo.Cái logic đằng sau của trị số P có thể được hiểu như là một tiến trình chứng minh đảo ngược (proof by contradiction):Mệnh đề 1: Nếu giả thuyết đảo là sự thật, thì dữ kiện này không thể xảy ra;Mệnh đề 2: Dữ kiện xảy ra;Mệnh đề 3 (kết luận): Giả thuyết đảo không thể là sự thật.Nếu bạn đọc cảm thấy khó hiểu cách lập luận trên, tôi xin lấy thêm một ví dụtrong y khoa để minh họa cho tiến trình này:-Nếu ông Tuấn bị cao huyết áp, thì ông không thể có triệu chứng rụng tóc (hai hiện tượng sinh học này không liên quan với nhau, ít ra là theo kiến thức y khoa hiện nay);-Ông Tuấn bị rụng tóc;-Do đó, ông Tuấn không thể bị cao huyết áp.số Trị số P, do đó, gián tiếp phản ánh xác suất của mệnh đề 3. Và đó cũng chính là một khiếm khuyết quan trọng của trị số P, bởi vì con số P nó ước tính mức độ khả dĩ của dữ kiện, chứ không nói cho chúng ta biết mức độ khả dĩ của một giả thuyết. Điều này làm cho việc suy luận dựa vào trị số P rất xa rời với thực tế, xa rời với khoa học thực nghiệm. Trong khoa học thực nghiệm, điều mà nhà nghiên cứu muốn biết là với dữ kiện mà họ có được, xác suất của giả thuyết chính là bao nhiêu, chứ họ không muốn biết nếu giả thuyết đảo là sự thật thì xác suất của dữ kiện là bao nhiêu. Nói cách khác và dùng kí hiệu mô tả trên, nhà nghiên cứu muốn biết P(H+ | D), chứ không muốn biết P(D | H+) hay P(D | H-).4. Vấn đề kiểm định nhiều giả thuyết (multiple tests of hypothesis)Như đã nói trên, nghiên cứu y học là một qui trình thử nghiệm giả thuyết. Trong một nghiên cứu, ít khi nào chúng ta thử nghiệm chỉ một giả thuyết duy nhất, mà rất nhiều giả thuyết một lược. Chẳng hạn như trong một nghiên cứu về mối liên hệ giữa vitamin D và nguy cơ gãy xương đùi, các nhà nghiên cứu có thể phân tích mối liên hệ tương quan giữa vitamin D và mật độ xương (bone mineral density), giữa vitamin D và nguy cơ gãy xương theo từng giới tính, từng nhóm tuổi, hay phân tích theo các đặc tính lâm sàng của bệnh nhân, v.v… (Xem ví dụ dưới đây). Mỗi một phân tích như thế có thể xem là một thử nghiệm giả thuyết. Ở đây, chúng ta phải đối diện với vấn đề nhiều giả thuyết(multiple tests of hypothesis hay còn gọi là multiple comparisons).Chú thích: 1 số ngoài ngoặc là số bệnh nhân bị gãy xương đùi trong thời gian theo dõi (7 năm) và số trong ngoặc là tỉ lệ gãy xương tính bằng phần trăm mỗi năm. 2 Tỉ số nguy cơ tương đối (hay relative risk – RR – sẽ giải thích trong một chương sau) được ước tính bằng cách lấy tỉ lệ gãy xương trong nhóm can thiệp chia cho tỉ lệ trong nhóm giả dược; nếu khoảng tin cậy 95% bao gồm 1 thì mức độ khác biệt giữa 2 nhóm không có ý nghĩa thống kê; nếu khoảng tin cậy 95% không bao gồm 1 thì mức độ khác biệt giữa 2 nhóm được xem là có ý nghĩa thống kê (hay p<0.05).Xin nhắc lại rằng trong mỗi lần thử nghiệm một giả thuyết, chúng ta chấp nhận một sai sót 5% (giả dụ chúng ta chấp nhận tiêu chuẩn p = 0.05 để tuyên bố có ý nghĩa hay không có ý nghĩa thống kê). Vấn đề đặt ra là trong bối cảnh thử nghiệm nhiều giả thuyết là như sau: nếu trong số n thử nghiệm, chúng ta tuyên bố k thử nghiệm “có ý nghĩa thống kê” (tức là p<0.05), thì xác suất có ít nhất một giả thuyết sai là bao nhiêu?Để trả lời câu hỏi này tôi sẽ bắt đầu bằng một ví dụ đơn giản. Mỗi thử nghiệmchúng ta chấp nhận một xác suất sai lầm là 0.05. Nói cách khác, chúng ta có xác suất đúng là 0.95. Nếu chúng ta thử nghiệm 3 giả thuyết, xác suất mà chúng ta đúng cả ba là [dĩ nhiên]: 0.95 x 0.95 x 0.95 = 0.8574. Như vậy, xác xuất có ít nhất một sai lầm trong ba tuyên bố “có ý nghĩa thống kê” là: 1 – 0.8574 = 0.1426 (tức khoảng 14%).Nói chung, nếu chúng ta thử nghiệm n giả thuyết, và mỗi lần thử nghiệm chúng ta chấp nhận một xác suất sai lầm là p, thì xác suất có ít nhất 1 sai lầm trong n lần thử đến: 40%.“Bài học” rút ra từ cách lí giải trên là như sau: nếu chúng ta đọc một bài báo khoa học mà trong đó nhà nghiên cứu tiến hành nhiều thử nghiệm khác nhau với các kết quả trị số p < 0.05, chúng ta có lí do để cho rằng xác suất mà một trong những cái-gọi-là “significant” (hay “có ý nghĩa thống kê”) đó rất cao. Chúng ta cần phải dè dặt với những kết quả phân tích như thế.... do bị lỗi nên chỉo post 2/3Có thể đọc tiếp:
[You must be registered and logged in to see this link.]

TBTNguồn: Ytcchue.blogspot.com


«Ðề Tài Trước|Ðề Tài Kế»


Trả lời nhanh
Trang 1 trong tổng số 1 trang
Có Bài Mới Có bài mới đăngChưa Có Bài Mới Chưa có bài mớiChuyên Mục Ðang Bị Khóa Ðã bị đóng lại
Free forum | © phpBB | Free forum support | Report an abuse | www.sosblogs.com